Table of Contents

- PI 3 plug-in injectors for organic powders ... 2
 - Fields of application ... 2
 - Principle of the injector and the influence of supplementary air 3
- Setting table for the PI 3 injector .. 4
- PI 3 Injector - Cleaning and Maintenance .. 5
 - a) Cleaning ... 5
 - b) Cleaning the check valves .. 6
- Trouble shooting guide ... 6

- Spare Parts List, PI3-H Injector ... 7
PI 8 plug-in injectors for organic powders

Fields of application

The PI 8 injector is used to convey normal organic powders between the powder hopper and the powder gun. The injector is supplied with a Tefzel powder hose fitting as standard. It is recommended to use a Teflon powder hose fitting for especially difficult to use powder. The Teflon powder hose fitting can be ordered separately (see also the Spare Parts List on pages 6 and 7).

The PI 8 "plug-in injector" allows fast cleaning and easy handling because it can be detached from the powder hopper without using any tools. All pneumatic connections are also easily detachable (Quick-release connectors). Depending on the application the pneumatic connections of the PI 8 can be selected either for vertical or for horizontal operation.

PI 8-V

PI 8-V "Vertical plug-in injector" with detachable pneumatic quick-release connections

Figure 1

PI 8-H

PI 8-H "Horizontal plug-in injector" with detachable pneumatic quick-release connections

Figure 2

This injector type is recommended when the curves of the hoses would be too small and could cause kinking in the hoses, thereby obstructing the air flow (Standard with MPS-L and MPS-S).
Principle of the injector and the influence of supplementary air

When air flows through the nozzle into the cavity, a vacuum is created in the cavity, (see figure below). This vacuum causes powder to be drawn up the suction tube and into the cavity. A powder/air mixture is created. The forward air velocity at the nozzle conveys powder through to the powder hose and the gun.

The concentration of the powder/air mixture, and with it, the powder output depends on the conveying air pressure and supplementary air pressure, the quality of the powder, the length of the powder hose, the diameter of the powder hose, the number of coils in the hose, the difference in the height between the gun and injector, and the type of nozzle.

Experience with pneumatic material handling technology shows that pneumatic transport of fine solid matter (powder) in the form of tubing (hose) the transporting medium requires a certain volume of air per unit of time. With an ø 11 mm hose this value is approximately 4 m3/h. To decrease the powder output, the vacuum in the cavity has to be reduced. For that purpose the pressure of the conveying air is also reduced. With the reduction of the conveying air the volume of air in the powder hose sinks to below the optimum value of 4 m3/h. The powder transport becomes irregular, so-called "pumping" takes place. In order to prevent this from happening supplementary air is added until the volume of the air in the powder hose is 4-5 m3/h once more. As the flowmeter (4 - Fig. 4) measures the sum of the conveying air and supplementary air the ball in the flowmeter should therefore "float" within the green section of the scale.

The pressure gauge for conveying air is graduated in 1/10th bar and indicates the powder output accordingly. See "Setting table for the PI 8 injector" on the opposite page. The flowmeter for the sum of conveying and supplementary air is graduated in m3/h.
Setting table for the PI 8 injector

In order to set the conveying, and supplementary air correctly on the PGC and therefore the powder output, the amount of powder to be deposited must be determined first. The conveying air pressure setting for the pressure gauge (2) is found in the table below through the desired amount of powder to be deposited, in grams per minute. If the conveying air pressure is increased, through the control knob (1), then the powder output increases correspondingly. If the ball in the flowmeter (4) does not "float" in the green sector of the scale then the supplementary air must be adjusted either up or down, on the setting knob (3). Should the conveying air be set to over 2.5 bar then the supplementary air is no longer required and the setting knob (3) can be turned completely to the left-hand stop.

ATTENTION ! After every setting of the conveying air the ball in the flowmeter (4) should "float" in the green sector of the scale (4-5 m³/h).

If the conveying air pressure is set above 3 bar for certain applications, then the volume of air, without supplementary air, increases to over 5 m³/h. The supplementary air is only required for rinsing the check valve. The setting knob (3) should not be fully closed (See also "Principle of the injector and the influence of supplementary air").

Values in the table below are approximate and only serve as a guideline for the various settings as conditions in different workshops can vary greatly.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Powder hose :</th>
<th>Powder:</th>
<th>Constant volume of air : 4 m³/h (Conveying air + supplementary air).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder hose :</td>
<td>ø 11 mm - 6 m. and 12 m. long.</td>
<td>PES 31.9010 S</td>
<td></td>
</tr>
<tr>
<td>G/Min. (6 m) (12 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 g/min.</td>
<td>0.65 bar</td>
<td>0.92 bar</td>
<td></td>
</tr>
<tr>
<td>50 g/min.</td>
<td>0.80 bar</td>
<td>1.14 bar</td>
<td></td>
</tr>
<tr>
<td>75 g/min.</td>
<td>0.93 bar</td>
<td>1.32 bar</td>
<td></td>
</tr>
<tr>
<td>100 g/min.</td>
<td>1.10 bar</td>
<td>1.52 bar</td>
<td></td>
</tr>
<tr>
<td>125 g/min.</td>
<td>1.22 bar</td>
<td>1.70 bar</td>
<td></td>
</tr>
<tr>
<td>150 g/min.</td>
<td>1.38 bar</td>
<td>1.90 bar</td>
<td></td>
</tr>
<tr>
<td>175 g/min.</td>
<td>1.50 bar</td>
<td>2.11 bar</td>
<td></td>
</tr>
<tr>
<td>200 g/min.</td>
<td>1.65 bar</td>
<td>2.32 bar</td>
<td></td>
</tr>
<tr>
<td>g/Min. (6 m) (12 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225 g/min.</td>
<td>1.80 bar</td>
<td>2.61 bar</td>
<td></td>
</tr>
<tr>
<td>250 g/min.</td>
<td>1.94 bar</td>
<td>3.07 bar</td>
<td></td>
</tr>
<tr>
<td>275 g/min.</td>
<td>2.09 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 g/min.</td>
<td>2.24 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>325 g/min.</td>
<td>2.43 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350 g/min.</td>
<td>2.75 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>375 g/min.</td>
<td>3.15 bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 g/min.</td>
<td>3.50 bar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PI 8 Injector - Cleaning and Maintenance

a) Cleaning should be done daily before starting work or with a colour change

1. Remove the injector from powder hopper cover.
2. Pull hose off the hose fitting (6).
3. Remove the hose fitting (6) from the injector.
4. Clean the hose fitting (6) with the spiral gun brush, and with compressed air that is free of water and oil, check for wear.
5. Clean injector body (5) with compressed air that is free of water and oil. Any contamination can be seen through the opening of the hopper fitting (4).
6. Reassemble the injector and fit on the hopper cover.

Caution: If the injector is severely fouled, it must be disassembled. Remove the check valves (1, and 7) and the injector nozzle (3) with the correct sized spanners. Clean the component parts with compressed air and, if necessary, dissolve sintered deposits with nitro-thinners (after dismantling the check valve).

Do not scrape. Do not use acetone!
b) Cleaning the check valves (1, and 4 - Fig. 6)

Care should be taken when disassembling the check valves, that the spring and/or the ball are not lost.

![Diagram of check valves](image)

Attention: Do not place the ball in solvents !!!

1 Check valve (w/o notch) 3 Spring
2 Ball 4 Check valve (with notch)

Figure 6

The PI 3 injector should be cleaned at least once a day.

Normally, it can be disassembled as described on the previous page.

The injector should be totally disassembled **once a week or by heavy contamination.** See also Figure 7 or 8 - Spare parts drawing on the following pages.

Trouble shooting guide

If the gun does not spray powder although the PGC 1 Powder Gun Control is switched ON the injector could be contaminated:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injector, injector nozzle, check valve, powder hose or gun are clogged and must be cleaned.</td>
<td>Clean the corresponding part(s)</td>
</tr>
</tbody>
</table>
Spare Parts List PI 8-H Injector

Injector (complete) 128459
1 Check valve - conveying air (complete - incl. Items 5, 6) 114626
2 Check valve (with notch) - suppl. air (complete - incl. Items 5, 6) 114626
3 Injector body 114629
4 Elbow connection - 1/8"-1/8" 114627
5 Ball 114624
6 Spring 114625
7 Hose fitting - Tefcel 114630#
7.1 Pump Insert - Teflon 116735#
8 Injector nozzle - Ø 1.6 mm (with notch) 128461

9 O-ring - Ø 16 x 2 mm 110306
10 Quick-release connector - Ø 8 / 6 mm 106540
11 Conveying air hose - Ø 8 / 6 mm (red) 106475*
12 Supplementary air hose - Ø 8 / 6 mm (black) 106476*
13 Screw coupling for hose - Ø 8 / 6 mm 110178
 Powder hose 121945

* Indicate length required
#Wear parts

Figure 8